The solvent-protected core of the hairpin ribozyme-substrate complex.
نویسندگان
چکیده
The complex between the hairpin ribozyme and its substrate consists of two domains that must interact in order to form a catalytic complex, yet experimental evidence concerning the points of interaction between the two domains has been lacking. Here, we report the use of hydroxyl radical footprinting to define the interface between the two domains. Cations that support very efficient ribozyme catalysis (magnesium and cobalt(III) hexammine) lead to the formation of a docked complex that features several regions of protection, indicating a solvent-inaccessible core within the tertiary structure of the complex. Cations that are suboptimal in cleavage reactions do not produce complexes with regions of reduced solvent accessibility. Nucleotides encompassing the substrate cleavage site (c-2, a-1, g+1, and u+2) are strongly protected, suggesting their internalization into the catalytic core. Four distinct segments of the ribozyme are protected, including G11-A14, C25-C27, A38, and U42-A43. Protection of these sites is eliminated when g+1, an essential base at the cleavage site, is replaced by A. In addition, mutations which are known to decrease the fraction of docked complexes decrease or eliminate formation of a solvent-inaccessible core. Taken together, these observations demonstrate that we have identified the catalytic core of the active hairpin ribozyme-substrate complex.
منابع مشابه
A base change in the catalytic core of the hairpin ribozyme perturbs function but not domain docking.
The hairpin ribozyme is a small endonucleolytic RNA motif with potential for targeted RNA inactivation. It optimally cleaves substrates containing the sequence 5'-GU-3' immediately 5' of G. Previously, we have shown that tertiary structure docking of its two domains is an essential step in the reaction pathway of the hairpin ribozyme. Here we show, combining biochemical and fluorescence structu...
متن کاملThe hairpin ribozyme substrate binding-domain: a highly constrained D-shaped conformation.
The two domains of the hairpin ribozyme-substrate complex, usually depicted as straight structural elements, must interact with one another in order to form an active conformation. Little is known about the internal geometry of the individual domains in an active docked complex. Using various crosslinking and structural approaches in conjunction with molecular modeling (constraint-satisfaction ...
متن کاملThermodynamic dissection of the substrate-ribozyme interaction in the hammerhead ribozyme.
The free energy of substrate binding to the hammerhead ribozyme was compared for 10 different hammerheads that differed in the length and sequence of their substrate recognition helices. These hammerheads were selected because neither ribozyme nor substrate oligonucleotide formed detectable alternate secondary structures. The observed free energies of binding varied from -8 to -24 kcal/mol and ...
متن کاملThe hairpin ribozyme: structure, assembly and catalysis.
Recent studies of the hairpin ribozyme have revealed a distinct catalytic mechanism for this small RNA motif. Inner-sphere coordinated metal ions are not required, as the inert metal ion complex cobalt hexammine promotes catalysis. Detailed kinetic analyses have defined rates of individual steps in the catalytic cycle. Functional group modification, NMR studies of subdomains and cross-linking e...
متن کاملStructural basis for heterogeneous kinetics: reengineering the hairpin ribozyme.
The RNA cleavage reaction catalyzed by the hairpin ribozyme shows biphasic kinetics, and chase experiments show that the slow phase of the reaction results from reversible substrate binding to an inactive conformational isomer. To investigate the structural basis for the heterogeneous kinetics, we have developed an enzymatic RNA modification method that selectively traps substrate bound to the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 37 42 شماره
صفحات -
تاریخ انتشار 1998